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The results of an investigation on the effect of a weak heterogeneity of a porous 
medium on natural convection are presented. A medium heterogeneity is represented 
by spatial variations of the permeability and of the effective thermal conductivity. As 
a general rule the existence of horizontal thermal gradients in heterogeneous porous 
media provides a sufficient condition for the occurrence of natural convection. The 
implications of this condition are investigated for horizontal layers or rectangular 
domains subject to isothermal top and bottom boundary conditions. Results lead to a 
restriction on the classes of thermal conductivity functions which allow a motionless 
solution. Analytical solutions for rectangular weak heterogeneous porous domains 
heated from below, consistent with a basic motionless solution, are obtained by 
applying the weak nonlinear theory. The amplitude of the convection is obtained from 
an ordinary non-homogeneous differential equation, with a forcing term representative 
of the medium heterogeneity with respect to the effective thermal conductivity. A 
smooth transition through the critical Rayleigh number is obtained, thus removing a 
bifurcation which usually appears in homogeneous domains with perfect boundaries, 
at the critical value of the Rayleigh number. Within a certain range of slightly 
supercritical Rayleigh numbers, a symmetric thermal conductivity function is shown to 
reinforce a symmetrical flow while antisymmetric functions favour an antisymmetric 
flow. Except for the higher-order solutions, the weak heterogeneity with respect to 
permeability plays a relatively passive role and does not affect the solutions at the 
leading order. In contrast, the weak heterogeneity with respect to the effective thermal 
conductivity does have a significant effect on the resulting flow pattern. 

1. Introduction 
Natural convection in porous media is of practical interest in geophysics and 

engineering. Heat transfer in geothermal systems and insulation technology serve as 
typical examples. In geophysical and engineering applications the porous domain is 
frequently non-homogeneous in the sense that its permeability and effective thermal 
conductivity exhibit spatial dependence. For a pure fluid (non-porous domain) thermal 
conductivity is at most temperature dependent (but not explicitly spatially dependent). 
In contrast, thermal conductivity of a porous domain can be explicitly spatially 
dependent because of variations in the porosity and the solid phase composition. 
Practically every porous domain exhibits at least weak heterogeneity with respect to 
permeability and effective thermal conductivity. Therefore the influence of hetero- 
geneity on natural convection is of practical interest in the aforementioned 
geophysical and engineering applications. 
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This significance continued to be recognized by scientists and engineers. For example 
Gheorghitza (1961) considered a porous domain consisting of two homogeneous 
horizontal layers having different permeabilities. McKibbin & O’Sullivan (1980) 
extended this case to a multilayered stratification in a closed domain and concluded 
that large permeability differences between the layers are required to force the system 
into an onset-mode quite different from a homogeneous system. Although their 
equations included the possibility of a heterogeneous thermal conductivity, the isolated 
effect of this factor was not presented. Rubin (1981) investigated the heterogeneity 
effect in a porous domain with vertical variations in permeability and effective thermal 
conductivity. He obtained a condition for the existence of a motionless solution as a 
restriction on the basic temperature distribution. The investigation here shows that 
Rubin’s (1981) restriction is valid only for the particular case of vertical stratification. 
For the more general case further restrictions are required. Gjerde & Tyvand (1984) 
and Nield (1987) considered vertical or horizontal and continuous or discrete 
stratification but excluded the possible variation of the effective thermal conductivity. 
Such variations were investigated by McKibbin (1986) for a horizontal stratification 
consisting of vertical columns. 

All these studies considering heterogeneity assume a vertical or horizontal 
stratification, i.e. the division of the horizontal domain into horizontal sub-layers or 
vertical columns having different values of permeability or effective thermal 
conductivity. The majority of these cases are limited to investigating the effect of 
spatially dependent permeability but for a constant value of effective thermal 
conductivity. Here we consider a general form of stratification of the porous-medium 
permeability and thermal conductivity and investigate its effect on natural convection. 
Although our primary interest is the steady-state solutions to the problem, we retain 
the time dependence in order to discuss the stability of the solutions, and the 
interaction between the initial conditions and the inherent imperfection of the 
heterogeneous porous medium. Similar effects of small imperfections on the convection 
at the leading order were obtained for boundary imperfections by O’Sullivan & 
McKibbin (1986) and by Vadasz & Braester (1992). In contrast, the present 
investigation considers an inherent rather than a boundary imperfection. 

2. Mathematical formulation 
Consider a fluid-saturated heterogeneous porous domain confined by rigid 

boundaries. The flow is assumed to be in the range where Darcy’s law applies. At each 
point of the flow domain the temperatures of the solid and fluid phases are assumed 
to be equal. Under Boussinesq’s approximation (see for instance Dagan 1972, pp. 
55-64) and assuming a linear relation between the density and temperature, the 
governing mass, momentum and energy balance equations, expressed in a dimen- 
sionless form, are given by 

V . q = O ,  (1) 

(2) q = - k(Vp + RaTtg), 

where Ra is the porous-media Rayleigh number defined as 
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in which an asterisk denotes dimensional quantities, Mf is the ratio between the heat 
capacity of the fluid and the effective heat capacity of the porous medium domain, p, 
is the thermal expansion coefficient, g, is the gravity acceleration, k, is a permeability 
reference value, AT, denotes a characteristic temperature difference, 1, is a characteristic 
lengthscale, a,, is the reference value of the effective thermal diffusivity of the fluid- 
saturated porous domain and v* is the fluid kinematic viscosity. In (l), (2), and (3) q 
is Darcy’s flux, T is the temperature and p is the pressure related to an adiabatic 
hydrostatic reference, gg is a unit vector in the direction of gravity, and k and h are the 
permeability and the effective thermal conductivity functions of the porous domain, 
respectively. The heterogeneity of the porous medium is defined by k and h which are 
allowed to vary within the domain. Yet k and h are assumed independent of 
temperature. The variables are scaled by using l,, (c Mf)/aeO,  aeo/(lc Mf), (p, aeo)/(ko Mf) 
and AC as the characteristic values of length, time, Darcy’s flux, pressure and 
temperature variations, respectively. A reference value of permeability, k,, is used to 
scale the permeability function k,(X). Similarly a reference for the effective thermal 
conductivity, he,, is used to scale the conductivity function, h,,(X), where X denotes 
the position vector (= ~ 6 ~ + + 2 ~ + + 6 ~ ,  where 6z, gY and are unit vectors in the 
directions x ,  y, and z respectively). The effective thermal conductivity function is 
defined as A, = ?A,+ (1 - v) A,, where q~ is the porosity and A, and A, are the values of 
thermal conductivity in the fluid and solid phases, respectively. 

The following analysis is confined to closed domains D,  bounded by impermeable 
boundaries B. This type of boundary implies the boundary condition q - &,I, = 0, 
where 8, is a unit vector normal to B. 

2.1. A condition for the existence of a motionless solution in heterogeneous 
porous media 

A Cartesian coordinate system is used such that the vertical axis z, positive upwards, 
is collinear with gravity; then in (2) 2g = - tZ. Dividing (2) by k and applying the curl 
operator results in 

V X ( T ~ ~ ) = V T X ~ ~ = O  for q = O .  (4) 
This condition implies that 

q = O*VH T = 0, 

where V ,  T = (aT/ax) 2z + (aT/ay) tY is the horizontal thermal gradient. Thus the 
necessary condition for the existence of a motionless state in a heterogeneous porous 
domain is similar to the corresponding condition for a homogeneous porous medium, 
i.e. V, T = 0 throughout the domain. The implications of this condition for horizontal 
layers or rectangular domains are treated by evaluating the temperature distribution 
corresponding to a motionless state, i.e. the conduction solution in a heterogeneous 
medium. For steady-state conditions, i.e. aT/at = 0 and for a motionless solution, (3) 
reduces to 

v ’ [AVT] = 0. (6 )  

As V T  = V, T+aT/az$,, the motionless state condition ( 5 )  yields V T  = i3T/az2z for 
q = 0. Substitution of this result in (6) and integrating leads to the following solution for 
heterogeneous media : 

T = C ,  17 -+C, for q = O ,  (7) 

where the coefficients C, and C, are to be determined from the boundary conditions 
12-2 
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and are in general functions of x and y as h = A(x, y ,  z). For a horizontal layer or a 
rectangular domain heated from below, the isothermal boundary conditions at the 
bottom and top are Zlz-o = 1 and Zlz-l = 0. The temperature distribution is obtained 
by evaluating the coefficients C,, C,. Equation (7) can then be rewritten as 

where 5 is a dummy variable. Since A is a function of x, y and z it becomes necessary 
to verify the compatibility of the solution (8) with the motionless condition (5 ) .  
Substituting (8) into the condition V, T = 0 the requirement for the existence of a 
motionless solution is obtained as 

The integral condition (9) can be expressed in the following form 

As the integral in (10) must vanish for every value of z~ [0,1], the integrand itself must 
necessarily vanish. This leads to 

The equality (I  1) represents the necessary condition for the motionless condition (9) to 
hold. Furthermore, it can be presented as two scalar equalities as follows: 

Therefore lnh = Gfz)+H(x,y) ,  (13) 
which leads to the necessary condition required for consistency with a motionless 
solution restricted by the class of functions h(x, y ,  z). This restriction is expressed by the 
following form of separation of variables : 

h(X) = f ( z )  w, v), (14) 
wheref(z) and h(x, y )  are arbitrary functions of z and (x, y )  only. Whenever the effective 
thermal conductivity function h(X)  satisfies (14), a motionless state is possible. If this 
rule is not satisfied natural convection occurs unconditionally. Upon substitution of 
(14) into the basic conduction solution (8) the temperature distribution takes the form 

wheref(z) is the component of the thermal conductivity function (14) which represents 
the vertical variations of A. Despite the dependence of h on x , y  and z it is clear from 
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(1  5 )  that the temperature distribution is a function of z only. This temperature profile 
is generally nonlinear and may reflect different functional forms according to the 
particular form off(z). For example, i f f=  constant, (15) yields the linear temperature 
profile T(z) = 1 -z. In this case the heterogeneity is expressed in the form of a 
horizontal stratification, i.e. the thermal conductivity is a function of the horizontal 
coordinates only, h = h(x,y). On the other hand if h = constant in (14), the thermal 
conductivity depends only on z, i.e. h = f (z), thus leading to a vertical stratification. In 
both cases the requirement for the existence of a motionless solution, expressed by (14), 
is satisfied identically. These are the cases investigated in previous studies cited in the 
introduction. No restriction was found regarding the permeability function as far as 
the motionless solution is concerned. In order to investigate the effect of a more general 
stratification, say an arbitrary function h(x, y, z), and not necessarily satisfying (14), we 
assume a weak heterogeneity with respect to thermal conductivity and permeability. 

2.2. The weak heterogeneous porous medium 
The weak heterogeneity effect described here is confined to a rectangular two- 
dimensional porous domain subject to isothermal heating from below and cooling 
from above. Strauss (1974) showed that two-dimensional natural convection is stable 
up to nine times the value of the critical Rayleigh number. Using a stream function ?+h 
defined by u = a@/az, w = - ay9/ax, where u and w are the Darcy's flux components in 
the x- and z-directions respectively, and applying the curl operator on (2) we obtain 
from (2) and (3) 

aT a@aT a@aT hV2T+Vh.  VT-----+--  = 0. 
at az ax ax aZ (17) 

Here the operators V and V2 are two-dimensional and represent V = @/ax) ,c?$ + (a/az) 
gZ and V 2  = a2/ax2+a2/az2 respectively. For the rectangular domain the boundary 
conditions are ?,b = OVXEB, T =  1 at z =  0, T=O at z =  1, and aT,Qx= 0 at x = O  
and x = L where L (length/height) is the aspect ratio of the domain. Equations (16) 
and (17) form a nonlinear coupled system. To obtain an analytical solution we recall 
that for the corresponding perfect case (homogeneous domain) the linear growth of 
small perturbations at Ra > Ra, is proportional to (Ra- Ra,), where Ra,(m, n)  is the 
characteristic value of Ra obtained from a linear stability analysis and equals 
n2(m2 +n2L2)2/m2L2. This, coupled with the establishment of a balance between the 
linear growth and decay due to nonlinearity, implies that (Ra-Ru,) = O(e2), Therefore 
e can be defined by e2 = (Ra- Ra,)/Ra which has a form similar to that used by Palm, 
Weber & Kvernvold (1972). By using this definition of E the dependent variables @, T 
and p are expanded in the form 

[@, T,p] = [@(O), P , p ( O ) ]  +€[?p, P , p ( 1 ) ]  + € Z [ ? p ,  P , p ( 2 ) ]  

+ ~ ~ [ ? , b ( ~ ) ,  1<3),p(3)] + 0(e4), (18) 

where @'), Fo) and p(O) represent the basic motionless solution, i.e. @O) = 0, 
F0) = 1 -z  and p(O) = Ra,(z-$z2+const.). The Rayleigh number is expanded in a 
finite power series as follows: 

Ra = Ra, + RaF)[e2 + e4 + . . . . + €281. (19) 
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For the imperfect case (heterogeneous porous domain) the thermal conductivity and 
permeability functions A and k can be expanded in the form 

(20) 
where 0 < S 6 1 is a small parameter reflecting the weak heterogeneity of the domain. 
To be consistent with a basic motionless solution A, is constant and without any loss 
of generality we substitute A, = 1. In order to obtain a common basis for comparison 
between the effects of the heterogeneous thermal conductivity and the heterogeneous 
permeability we set the heterogeneity in k to the same order of A. Therefore ko is a 
constant and without loss of generality we set ko = 1. However, the imperfect case 
depends on two small parameters, the extent of the heterogeneity 6 and the thermal 
forcing (expressed by the deviation of Ra from Ra,), i.e. E'. Therefore, an expansion 
comprising a series in powers of 8d  is more appropriate for this case. By using such 
an expansion we find that for the imperfect linear problem a steady-state solution exists 
for Ra < Ra,. As Ra-2 Ra, resonance occurs and the amplitude grows like 
S(Ra-Ra,)-l. The singularity is removed by nonlinear effects and a steady state at 
cubic order exists only if an appropriate balance between (Ra - Ra,); and 6(Ra - Rae)-' 
is imposed. This means that as Ra;. Ra,, s - 6s-' or 6 N e3. Substituting e3 for 6 the 
expansion (20) up to order4 reduces to 

h = A, + S ~ , ( X ,  y ,  Z )  + 0(a2); k = k ,  + Sk,(X, y ,  Z)  + O(S2), 

h = 1 + E ~ A ( ~ ) ( x ,  z ) ;  k = 1 + E ~ ~ ( ~ ) ( x ,  z). (21) 

3. Analytical solution 

relationship resulting from (2) : 
The basic motionless solutions ?,h(O), To) and p(O) obey the following hydrostatic 

(22) 
This relationship does not represent any restriction on k. Substitution of (19) and (21) 
into (22) yields 

(23) 
Substitution of the expansions (1 8) along with the basic solutions $(O) = 0, Fo) = 1 - z 
and p(O) = Ra,(z -~z2  +const.) into the governing equations at order-s leads to 

V k  x Vp(O) = RaFo)V x (kd,). 

Vk(3) x Vp(O) = Ra, Fo)V x (k(3)2z). 

Decoupling the equations and using the homogeneous conditions at this order, i.e. 

a ~ 1 )  a P 
ax ax 

$-(l) = 0 V X E  B and F1)(x, 0) = P ( X ,  1) = - (0, z)  = - (L, z )  = 0 

the solutions at order-e are obtained in the form 

$ ( l )  = AE),(7) sin (rnnx/L) sin (nm), 
F1) = Bg',(7) cos (mnx/L) sin (nm). 

At Ra = Ra, the linear problem is asymptotically time independent, i.e. the marginally 
stable mode survives, all other modes decay. Slow time dependence must be restored 
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to eliminate secular terms and thereby extend the range of validity in time to times 
t = O(E-'). A rescaling of the time variable t is therefore necessary and allows the 
amplitudes of the solutions at order-s to vary slowly over the large timescale 7 = €9. 

BgL = - (mL) Ag',/7c(m2 + n2L2). 
At this point the amplitudes AgL and BgL remain undetermined; however, their values 
will be obtained at a later stage using a solvability condition on the equations at 
order-s3. 

Substitution of (26) and (27) into (24) and (25) yields the relationship 

The equations at order-s2 take the form 

Upon the substitution of the solutions for $(I) and F1) from (26) and (27) into (29) the 
right-hand-side forcing functions become 

The solution of the system of equations (28) and (30) subject to the homogeneous 
boundary conditions: @r(2) = F2) = 0 at z = 0 and z = 1, and @(2) = a P / a x  = 0 at 
x = 0 and x = L is obtained by the superposition of a homogeneous and a particular 
solution. Since the equations and the boundary conditions for the homogeneous part 
of the system are identical to those solved at order-s, their solution must also be 
identical. The particular solution introduces an additional term in the expression for 
F2) and the complete solutions at order-s2 are 

(31) 
(32) 

$(') = AZk sin (mxx /L)  sin (nxz), 
p2) = Bg', cos (mnx/L)  sin (n7cz) + Bg)Z, sin (2n7cz), 

where the relationship between A:; and BE; is given by 

BgL = - (mL) A:',/x(m2 + n2L2). 
At this stage the amplitudes Agh and @:; remain undetermined; however, their values 
can be obtained from the solvability condition of the equations at order-s4. Similarly 
the relationship between B(df;)zn and A:; is given by 

B(2) 0 . 2 ,  = - m2[A$',]2/8xn(m2 + n2La). 
At order-s3 one obtains the following set of equations: 

--a, F0)V x (1t(~)t5) = 0, (33) 
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Upon substitution of the basic solution Po) = 1 - z  and the relationship (23) into (33) 

a p 4  a p  a$@) a p  
a Z  ax ax a Z  

The corresponding boundary conditions at order-e3 are $(3) = F3) = 0 at z = 0 and 
z = 1, and $(3) = aF3)/i3x = 0 at x = 0 and x = L. By substituting (26), (27), (31) and 
(32) (representing the solutions at orders-€ and 2) into (35) and (36), the right-hand- 
side forcing functions are evaluated and the equations become 

As one may observe, (37) and (38) at order-e3 do not include the heterogeneity with 
respect to permeability, i.e. k(3). However, as the forcing functions in (38) contain the 
term ah(3)/i3z the heterogeneity with respect to thermal conductivity is included here. 
The differential operator of the system of equations (37), (38) is identical to the 
operator of the equations at order-s. Since (37), (38) at order-e3 are non-homogeneous 
versions of the equations at order E ,  a solvability condition for the equations at order- 
c3 must be satisfied. This condition constrains the amplitude of the solution at order- 
E and enables its determination. 

4. The amplitude equation 
The solvability condition is derived by multiplying (37) by $(l) and (38) by Ra, T”), 

integrating these equations over the domain x E [0, L], z E [0,1] and then adding them. 
As a result of these operations and making use of Green’s second identity, integration 
by parts, boundary conditions and the results at O(e), the solvability condition is 
obtained in the following form : 

As the heat flux boundary conditions at the sidewalls are homogeneous, i.e. 

the left-hand-side integral in (39) vanishes. Substituting the O(E) solution for F’) from 
a ~ / a x  (0, Z)  = a ~ / a ~  (L, z )  = o 
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FIGURE 1. Graphical representation of the solutions of the homogeneous 
non-homogeneous amplitude equations in the (6, A)-plane. 

and 

(27) and the relationships between l3gk and ALL between BgLfi and AZL in (39), the 
solvability condition simplifies to 

(40) dA/dt = x[&4 - A 3  + 71, 
where the following notation is used: 

R2 x = - 8L2’ 

7 = 32(m2 + n2L2) nc3 I dx [ cos (t) d ~ [ h ( ~ )  cos (naz)]] . 

A = -EmA(l) mn, 6 = 8(m2 +n2L2) 

mxx L 

0 0 

In (40) A represents the O(c) amplitude, 6 is the measure of the deviation of Ra from 
its critical value (6 = 0 for Ra = Ra,, 5 < 0 for Ra < Ra, and E > 0 for Ra > Ra,) and 
7 represents the weak O(e3) heterogeneity with respect to the effective thermal 
conductivity. For the particular perfect case (homogeneous porous media) where 
7 = 0 the steady-state solutions of the amplitude equation (40) are represented 
graphically in the (5, A)-plane by the dashed curves in figure 1. As one may observe, 
a bifurcation occurs at the critical value of Ra (i.e. at 6 = 0). For the imperfect case 
with a heterogeneous thermal conductivity 7 4 0 in (40) and for steady-state conditions 
the following nonlinear algebraic equation results : 

The analytical solution of this equation is 

The validity of the solution (43) is restricted to the condition q2 3 &?. This follows 
from the requirement that the discriminant of (42) is non-negative. In this case a unique 
real solution of (42) given by (43) exists. For y2 < 4g8/27 the discriminant of equation 
(42) is negative and the following three real solutions are obtained: 

A3-&4 = 7. (42) 

A = [ ~ + ( ~ 2 - ~ ~ ) ~ ~ + [ ~ - ( ~ 2 - ~ ~ ) ~ ] 6  vq22 &g3. (43) 

A, = 2(+$cos (iq5 + ai), i = 1,2,3 V$ < $c3, (44) 
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Case A'3'(x, 2) ?1 

8(m2 + n2L2) nLe3h":, 

(I+=)-odd 

(i+m)=odd 

nL 
1 28(rn2 + n2L2) - 2 c 

1-1 j-1 n2 1-1 
(f+m)=odd 

m ij 
j-1 C A : + i * - m 2 ) ( j 2 - n 2 )  

(5+n)-odd 

TABLE 1 .  The separate contribution of the series groups of terms on 7, equation (46) 

where q5 and ai are defined by 
0 for i =  1 

{ $ 7 ~  for i =  3. 
C O S ~  = -+.\/27g/$, ai = :x for i = 2 (45) 

One may conclude that for 6 < 3(+g)g the amplitude equation has a unique solution. 
This means that as long as the thermal conductivity heterogeneity is strong enough 
with respect to 6, i.e. Igl > 2($5)$, although still O(2) ,  it controls the intensity and 
direction of the flow, regardless of the initial flow and temperature conditions. 
However, if the heterogeneity is weak enough, i.e. (TI < 2(#: there are three possible 
solutions. The solutions of the amplitude equation (42) are presented in the (6, A)-plane 
in figure 1. The range of the unique solution as well as the range of the three bifurcating 
solutions corresponding to the three branches A,, A, and A, are apparent in the figure. 
A linear stability analysis of these three solutions was performed using (40). Results 
show that the solutions A ,  and A,  are stable while A,  is unstable. Results also show that 
in the imperfect case a smooth transition through the critical Rayleigh number replaces 
the sharp transition that occurred at  Ra& = 0) in the perfect case. 

was not given a particular functional form in (41) and the results show that 
g affects the flow considerably, it is of interest to investigate the effect of general 
functions h(,)(x, z )  on g. For this purpose we expand h(,)(x, z) into a double Fourier 
series and investigate the isolated effects of groups of terms in the series. The expression 
for the double Fourier expansion is presented in the Appendix. The constant term A;: 
and the first two series in (A 1) (see Appendix) do not bring any contribution to the 
amplitude equation (42). This is a direct result of the fact that introduction of these 
terms in (41) causes the integral to vanish, i.e. one obtains g = 0. Therefore only the 
terms involved in the double series of (A 1) affects the results. 

Actually, a more general conclusion results from the definition of g in (41): any 
function A ( 3 ) ( ~ ,  z )  which is a superposition of functions of x only or z only causes the 
integral to vanish and does not affect the results, i.e. T,I = 0. The isolated effects of the 
groups of terms in the series are presented in table 1. This table shows the results of 
substituting a series in the form (i)-(iv) into (41) to obtain a corresponding expression 

Since 
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for 7. The result obtained for case (i) shows that despite the general expansion for 
A(3)(x,~), which was allowed to include all possible cosine modes, only those modes 
which reinforce the natural modes of convection, i.e. i = m, j = n, affect the amplitude 
equation through 7. The result of case (ii) shows that a weak 0(c3 )  heterogeneous 
thermal conductivity affects the amplitude of convection at order-€ at the horizontal 
natural modes, i.e. i = m. In contrast the vertical modes are affected by the value of the 
sum ( j + n ) ,  whether even or odd. Thus a symmetric function in the z-direction (with 
respect to z = $, i.e. j is odd) gives rise to a symmetric flow in this direction (i.e. an even 
number of convection cells) and conversely, an antisymmetric function suggests an 
antisymmetric flow. The results of case (iii) are similar to these obtained for case (ii), 
the only difference being the exchange of the effects between the x- and z-directions. 
Similar results can be observed for case (iv) in table I ,  i.e. a symmetric function (with 
respect to x = aL or z = :) suggests a symmetric flow in the same direction and an 
antisymmetric function an antisymmetric flow. The general series (A 1) is a 
superposition of the particular cases treated separately. The general expression for 7 in 
this case is given by 

7 = 8(m2+n2La)nLe3 

m ' 1. (46) 4 "  i 16 " 
j=l (i" - m2) (j" - n') 

(i+m)-odd (t+m)=odd (j+n)=odd 

The conclusions regarding the amplitude of convection and the effect of the separate 
terms of the series (A 1) have been discussed earlier and apply equally well to (46) 
above. 

5. The mean heat flux 
The vertical mean heat flux through the porous domain at steady state, defined in terms 
of the Nusselt number, is 

Noting that the integral in (47) is independent of spatial variables the Nusselt number 
may then be evaluated for convenience at z = 0 where w = 0. Using (18) and (21) the 
Nusselt number takes the following form : 

Substitution of the basic solution for Po) and for F1) and F2) from (27) and (32), 
respectively, into (48) yields the following expression for the value of Nusselt number 
to order-2: 

A' + 0(c3), 1 
N u =  1 +  4(m2 + n2L2) (49) 

where A is the steady-state solution of the amplitude equation (40), presented in the 
previous section. 
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Properties of thermal 
Case w ,  4 conductivity function 1 m n  

128(m* + n2L2) nL2 
m2n2x4 

Om, Vm=odd, 
n = odd (a) 1 +8,,(x-$)(z-$ Antisymmetric in both I 

0 V(m = even, n = odd), (rn = odd, 
n = even), (m = even, n = even) 

128(m2 + n2L2) nL3 
Om, Vm = even, 

n = even m2n2x4 

0 V(m = odd, n = even), (m = even, 
n = odd), (m = odd, n = odd) 

- 128(m2 + n2L2) nLa 

x- and z- directions 

ern,, Vm =even, 
m2nW n = odd 

0 V(m = even, n = even), (m = odd, 
n = even), (m = odd, n = odd). 

i (b) I +O,,(X-~L)~(Z-~)~ Symmetric in both x- 
and z- directions 

(c)  1 +Orn,,(x--~LL)2(z-~) Symmetric in the 
x- direction and 
antisymmetric in the 
z-direction 

( d )  1 + O,,(x -4L) (z - i)2 Antisymmetric in the L20mn Vm = odd, 
m2n2x4 n = even x- direction and 

~ ~~~ 

0 V(m = odd, n = odd), (m = even, 
n = odd), (m = even, n = even). 

symmetric in the 
z-direction 

TABLE 2. The effect of symmetric and antisymmetric thermal conductivity function on the resulting 
pattern of convection. (em, = a&,, where a is an arbitrary constant and E,, is the value of E 
corresponding to Ra,) 

6 .  Results and discussion 
The analytical solutions obtained in the previous sections were used in the evaluation 

of the amplitude and the Nusselt number corresponding to some particular examples 
of thermal conductivity functions. These examples are used to demonstrate the effect 
of symmetric and antisymmetric thermal conductivity functions on the resulting 
pattern of convection. Four examples were selected corresponding to various 
combinations of symmetric and antisymmetric functions in the x- and z-directions 
(with respect to x = iL, z = i), as presented in table 2. 

In this table Om,, = a€;, where a is an arbitrary constant and emn is the value of E 
corresponding to the characteristic value of Ra which depends on rn and n. y m n  shown 
in the right-hand column is obtained from h(x, z )  by way of (41). It is evident from table 
2 that an antisymmetric thermal conductivity function in both the x- and z-directions 
(example a) reinforces antisymmetric solutions, whereas a symmetric function in both 
the x- and z-directions (example b) imposes symmetric solutions. A thermal 
conductivity function which is symmetric in the x-direction and antisymmetric in the 
z-direction (example c) excites the symmetric modes in the x-direction and the 
antisymmetric modes in the z-direction. It follows that antisymmetric solutions in the 
x-direction and symmetric solutions in the z-direction are obtained as a result of a 
function (example d )  that is antisymmetric in the x-direction and symmetric in the z- 
direction. 

For the thermal conductivity function corresponding to example (a)  in table 2 the 
relationship of T,+,,,, was used to evaluate the amplitude A and the Nusselt number for 
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A 

Nu 

I I I I I I m 
0.8 1.0 1.2 1.4 1.6 1.8 

RalRa, 
A 

2.4 

2.2 

2.0 

1.8 

1.6 

1.4 

1.2 

1 .o 
0.8 1.0 1.2 1.4 1.6 1.8 

RalRa, 
FIGURE 2. The amplitude (a) and the Nusselt number (b) based on the largest amplitude as 

function of RalRa,, for L = 4, m = 3 and n = 1. 

different values of Ra and 10mnl. The amplitude A was evaluated by substituting qmn 
from table 2 into (43) and (44) for L = 4, m = 3 and n = 1. The results for different 
values of Ra and 10m,J are presented in figure 2(a). The corresponding heat flux is 
presented in terms of Nusselt number (49), in figure 2(b). For values of Ra beyond the 
imperfect bifurcation the largest amplitude was used in (49) to calculate the value of 
Nu. The smooth transition through the critical value of Ra for non-vanishing values of 
18m,J is apparent in these figures. The resulting flow and temperature fields 
corresponding to L = 4, m = 3 and n = 1 are presented in figure 3 for Ra = 45. The 
odd number of convection cells ( m  = 3) is a result of the antisymmetric thermal 
conductivity function (case a in table 2). This solution holds irrespective of the even 
aspect ratio (L  = 4). However, for the same value of Rayleigh number, i.e. Ra = 45, 
five convection cells give rise to an additional solution that is consistent with qmn for 
this case. The resulting flow and temperature fields corresponding to L = 4, m = 5 and 
n = 1 are presented in figure 4. These two possible solutions are governed by the 
thermal conductivity function while the flow direction is controlled by the sign of Omn 



358 C. Braester and P. Vadasz 

a=,  ax 
ly= 0 

T =  1 , l y =  0 
FIGURE 3. Graphical representation of the analytical solutions for the flow and temperature fields 
corresponding to 8,, = 0.86, Ra = 45, L = 4, m = 3 and n = 1. (a) 10 isotherms equally divided 
between Tmi, = 0 and T,,, = 1. (b) 10 streamlines equally divided between = - 1.53 and 

T = O , l y = O  

I I 
T = l , l y = O  

w =  0 

T =  1 , l y ’ O  

FIGURE 4. As figure 3 but for Om, = 1.72 and rn = 5. (a) 10 isotherms equally divided between 
T,,, = 0 and T,,, = 1. (b) 10 streamlines equally divided between $mfn = - 1.22 and = 1.22. 

in the expression for A(x, z )  in table 2. A four-convection-cell solution is also possible 
and can be realized by the initial perturbations that include this mode (rn = 4). In this 
case the value of the amplitude is obtained from the solution to the homogeneous 
amplitude equation in which 7 = 0. 

For the thermal conductivity function corresponding to example (c) in table 2, T~~ 
was used to evaluate the amplitude A and the Nusselt number for different values of 
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5. The amplitude (a) and the Nusselt number (b) based on the largest 
function of RalRa,, for L = 3, m = 2 and n = 1 .  
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amplitude as 

Ra and 10m,J. The amplitude A was evaluated similarly to that in case (a) but for 
L = 3, m = 2 and n = 1. The results for different values of Ra and 10m,J are presented in 
figure 5(a). The corresponding heat flux is presented in terms of the Nusselt number 
(49), in figure 5(b). For values of Ra beyond the imperfect bifurcation the largest 
amplitude was used in (49) to calculate the value of Nu. For any fixed Rayleigh number 
and fixed value of lornn[ the amplitudes shown in figure 5 are clearly smaller than those 
shown in figure 2. The resulting flow and temperature fields corresponding to case (c) 
and to L = 3, rn = 2 and n = 1 are presented in figure 6 for Ra = 50. The even number 
of convection cells (m = 2) is a result of the thermal conductivity function (case c in 
table 2). Here symmetry of the function in the x-direction imposes this pattern despite 
the odd aspect ratio ( L  = 3). Nevertheless, for the same value of Rayleigh number, i.e. 
Ra = 50, four convection cells represent an additional solution which is consistent with 
ymn for this case. The resulting flow and temperature field corresponding to L = 3, 
rn = 4 and n = 1 are presented in figure 7. These two possible solutions are governed by 
the thermal conductivity function while the flow direction is controlled by the sign of 
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ly= 0 

T = O , l y = O  

T = l , l y = O  

T = O .  w = o  

- aT-  0 
ax - 

y =  0 

= O  

0 

ly= 0 

(4 T = O , l y = O  

= O  

: O  

T =  l , l y = O  

- aT=O ax 
y = o  

T = l , y l = O  
FIGURE 7. As figure 6 but for 6,” = 4.25 and rn = 4. (a) 10 isotherms equally divided between 
Tmtn = 0 and T,,, = 1 .  (b) 10 streamlines equally divided between +mta = - 1.67 and ~,,,,, = 1.67. 



Eflect of a weak heterogeneity of a porous medium 361 

8,, in the expression for h(x,z) in table 2. A three-convection-cell solution is also 
possible and can be realized by the initial perturbations that include this mode 
(m = 3). In this case the amplitude is obtained as the solution to the homogeneous 
amplitude equation, in which 7 = 0. 

7. Conclusions 
Natural convection in horizontal layers or rectangular domains has a marked 

dependence on the heterogeneity of the porous medium. It was found that the 
heterogeneous thermal conductivity may cause an unconditional occurrence of natural 
convection if it does not satisfy a certain form of separation of variables. As no 
restriction was found on the permeability function, it is concluded that the 
heterogeneity with respect to the permeability does not affect the motionless condition. 
The division of the horizontal layer or rectangular domain into vertical columns or 
horizontal sub-layers represents configurations that were treated in the literature 
(Gheorghitza 1961; McKibbin & O'Sullivan 1980; Rubin 1981; Gjerde & Tyvand 
1984; McKibbin 1986; Nield 1987). These particular cases of horizontal or vertical 
stratification are examples which satisfy identically the motionless condition. In the 
work presented here the analytical solutions for rectangular weak heterogeneous 
porous domains which are heated from below show the direction of the flow to be 
controlled by the thermal conductivity function. In the particular cases of horizontal 
or vertical stratification, i.e. the division of the horizontal domain into vertical columns 
or horizontal sub-layers, the amplitude equation is not affected by the weak 
heterogeneity of the porous medium. 

These conditions have been extensively treated in the literature. For the more general 
but nevertheless weak stratification it was concluded that within a certain range of 
slightly supercritical Rayleigh number values a symmetric thermal conductivity 
function reinforces a symmetrical flow while an antisymmetric function favours an 
antisymmetric flow. The examples presented here suggest the possible existence of a 
mechanism for flow pattern selection associated with natural convection occurring in 
heterogeneous porous domains. Except for the higher-order solutions, the weak 
heterogeneity with respect to permeability plays a relatively passive role. It does not 
affect the solutions at the leading order, in contrast to the significant effect resulting 
from the weak heterogeneity with respect to the effective thermal conductivity. 

Appendix 

following form : 
The double Fourier expansion for h(s)(x,z)  performed in $4 is expressed in the 

1 "  + - I: [A:; cos (jnz) + sin (jnz)] 
&-I 

cos(jnz)+h~;sin 
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where the coefficients A:;, hi;, A:; and A:; are defined as follows: 

C.  Braester and P .  Vadasz 

L 

hcc = is' 1 A(3)(x, z )  cos 
2J L o o  

1 L  

As! = 11 1 A'3)(x, z)  sin 
L o o  
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